Практическое занятие №3.

Задачи для самостоятельной работы студента

Решение задач по темам: Нахождение частичных пределов. Использование критерия Коши сходимости последовательности.

1) Пользуясь критерием Коши, доказать сходимость следующих последовательностей

a)
$$x_n = a_0 + a_1 q + \ldots + a_n q^n$$
, rate $|a_k| < M$ $(k = 0, 1, 2, \ldots)$ u $|q| < 1$.

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
.
b)
 y казание. Воспользоваться неравенством $\frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n}$ $(n = 2, 3, \dots)$.

(2) Для последовательности x_n ($n=1, 2, \ldots$) найти inf x_n , sup x_n , $\lim_{n\to\infty} x_n$ и $\lim_{n\to\infty} x_n$, если:

a)
$$x_n = 1 - \frac{1}{n}$$
.
b) $x_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$.

$$x_n = \frac{n-1}{n+1} \cos \frac{2n\pi}{3}$$
. $x_n = 1 + n \sin \frac{n\pi}{2}$.

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

Задачи из Лекции №3 (ФИТ)

<u>Пример 1.</u> Пользуясь критерием Коши, доказать сходимость $x_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + ... + \frac{\cos n!}{n(n+1)}$.

<u>Пример 2.</u> Найти верхний и нижний пределы $x_n = \frac{2n-1}{n+1}\sin\frac{\pi n}{2}$, $n \in \mathbb{N}$.

<u>Пример 3.</u> Найти inf x_n , $\sup x_n$, $\underline{\lim} x_n$, $\overline{\lim} x_n$ для $x_n = 1 + 2(-1)^{n+1} + 3 \cdot (-1)^{\frac{n(n-1)}{2}}$ (n = 1, 2, ...)

ЗАДАЧИ С РЕШЕНИЯМИ

1. Доказать расходимость последовательности $x_n = (-1)^n$. \triangle Рассмотрим две подпоследовательности этой последовательности: $x_{2k} = 1$ и $x_{2k-1} = -1$ (k = 1, 2, ...). Очевидно, что $\lim_{k \to \infty} x_{2k} = 1$, $\lim_{k \to \infty} x_{2k-1} = -1$.

Таким образом, последовательность $\{(-1)^n\}$ имеет две предельные точки: 1 и -1, а поэтому не может быть сходящейся, поскольку сходящаяся последовательность имеет только одну предельную точку. \blacktriangle

1. Пользуясь критерием Коши, доказать сходимость последовательности $\{x_n\}$, где $x_n = \sum_{k=1}^n \frac{\sin k}{k^2}$.

 Δ В силу критерия Коши достаточно доказать, что последовательность $\{x_n\}$ фундаментальная Для этого оценим $|x_n-x_{n+p}|$. Имеем

$$|x_n - x_{n+p}| = \left| \sum_{k=n+1}^{n+p} \frac{\sin k}{k^2} \right| \le \sum_{k=n+1}^{n+p} \frac{1}{k^2}.$$

Так как
$$\frac{1}{k^2} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$$
, то

$$\sum_{k=n+1}^{n+p} \frac{1}{k^2} = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2} < \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{n+p-1} - \frac{1}{n+p}\right) = \frac{1}{n} - \frac{1}{n+n} < \frac{1}{n}.$$

Поэтому $\forall n, p \in \mathbb{N}$ имеем

$$|x_n - x_{n+p}| < 1/n. \tag{1}$$

Зададим теперь произвольное $\varepsilon>0$ и положим $N=[1/\varepsilon]$. Тогда $\forall n>N$ выполняется неравенство $n \geqslant [1/\varepsilon] + 1 > 1/\varepsilon$, откуда $1/n < \varepsilon$. Следовательно, $\forall n > N$ и любого натурального числа p, используя неравенство (1), получаем $|x_n-x_{n+p}|<1/n<arepsilon$. Это доказывает фундаментальность последовательности $\{x_n\}$. \blacktriangle

85
$$x_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}, n \in \mathbb{N}.$$

$$\begin{aligned} |x_{n+p} - x_n| &= \left| \frac{\sin(n+1)}{2^{n+1}} + \frac{\sin(n+2)}{2^{n+2}} + \dots + \frac{\sin(n+p)}{2^{n+p}} \right| \leqslant \\ &\leqslant \frac{|\sin(n+1)|}{2^{n+1}} + \frac{|\sin(n+2)|}{2^{n+2}} + \dots + \frac{|\sin(n+p)|}{2^{n+p}} \leqslant \\ &\leqslant \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+p}} + \dots = \frac{\frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = \frac{1}{2^n} < \varepsilon \end{aligned}$$

при $n > -\log_2 \varepsilon$ и всех натуральных p.

88. Пользуясь критерием Коши, доказать расходимость последовательностей
$$(x_n)$$
, где:
a) $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $n \in \mathbb{N}$; 6) $x_n = \frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln n}$, $n \in \mathbb{N}$.

◄ Пусть є — произвольное число из интервала]0, ½[.

а) Поскольку

$$|x_{n+p}-x_n|=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+p}>\frac{p}{n+p},$$

а при p = n

$$|x_{n+p} - x_n| > \frac{1}{2} > \varepsilon$$

для всех n, то последовательность расходится.

б) Расходимость последовательности следует из того, что

$$|x_{n+p}-x_n| = \frac{1}{\ln(n+1)} + \frac{1}{\ln(n+2)} + \ldots + \frac{1}{\ln(n+p)} > \frac{p}{\ln(n+p)} > \frac{p}{n+p} = \frac{1}{2} \quad \text{при} \quad n=p. \quad \blacktriangleright$$

Для последовательности (x_n) найти $\inf\{x_n\}$, $\sup\{x_n\}$, $\lim_{n\to\infty}x_n$ и $\overline{\lim_{n\to\infty}}x_n$, если:

92.
$$x_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$$

Так как все элементы последовательности (x_n) содержатся в последовательностях $x_{2n-1}=2+\frac{3}{2n-1},\ x_{2n}=-2-\frac{3}{2n}$ и $x_{2n}< x_{2n-1},$ причем последовательность (x_{2n-1}) монотонно убывает, а последовательность (x_{2n}) возрастает, то

$$x_1 = \sup\{x_n\} = 5, \quad \overline{\lim_{n \to \infty}} x_n = \lim_{n \to \infty} x_{2n-1} = 2,$$

 $x_2 = \inf\{x_n\} = -\frac{7}{2}, \quad \underline{\lim_{n \to \infty}} x_n = \lim_{n \to \infty} x_{2n} = -2. \blacktriangleright$